Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Molecules ; 26(21)2021 Oct 23.
Article in English | MEDLINE | ID: covidwho-1512507

ABSTRACT

Tuberculosis (TB) is an infectious disease that causes a great number of deaths in the world (1.5 million people per year). This disease is currently treated by administering high doses of various oral anti-TB drugs for prolonged periods (up to 2 years). While this regimen is normally effective when taken as prescribed, many people with TB experience difficulties in complying with their medication schedule. Furthermore, the oral administration of standard anti-TB drugs causes severe side effects and widespread resistances. Recently, we proposed an original platform for pulmonary TB treatment consisting of mannitol microspheres (Ma MS) containing iron (III) trimesate metal-organic framework (MOF) MIL-100 nanoparticles (NPs). In the present work, we loaded this system with the first-line anti-TB drug isoniazid (INH) and evaluated both the viability and safety of the drug vehicle components, as well as the cell internalization of the formulation in alveolar A549 cells. Results show that INH-loaded MOF (INH@MIL-100) NPs were efficiently microencapsulated in Ma MS, which displayed suitable aerodynamic characteristics for pulmonary administration and non-toxicity. MIL-100 and INH@MIL-100 NPs were efficiently internalized by A549 cells, mainly localized in the cytoplasm. In conclusion, the proposed micro-nanosystem is a good candidate for the pulmonary administration of anti-TB drugs.


Subject(s)
Antitubercular Agents/pharmacology , Isoniazid/pharmacology , Metal-Organic Frameworks/pharmacology , Tuberculosis, Pulmonary/drug therapy , A549 Cells , Administration, Inhalation , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Capsules/administration & dosage , Capsules/chemistry , Capsules/pharmacology , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Isoniazid/administration & dosage , Isoniazid/chemistry , Metal-Organic Frameworks/administration & dosage , Metal-Organic Frameworks/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL